Abstract
Background and Objectives
Inverse associations between caffeine intake and Parkinson disease (PD) have been frequently implicated in human studies. However, no studies have quantified biomarkers of caffeine intake years before PD onset and investigated whether and which caffeine metabolites are related to PD.
Methods
Associations between self-reported total coffee consumption and future PD risk were examined in the EPIC4PD study, a prospective population-based cohort including 6 European countries. Cases with PD were identified through medical records and reviewed by expert neurologists. Hazard ratios (HRs) and 95% CIs for coffee consumption and PD incidence were estimated using Cox proportional hazards models. A case-control study nested within the EPIC4PD was conducted, recruiting cases with incident PD and matching each case with a control by age, sex, study center, and fasting status at blood collection. Caffeine metabolites were quantified by high-resolution mass spectrometry in baseline collected plasma samples. Using conditional logistic regression models, odds ratios (ORs) and 95% CIs were estimated for caffeine metabolites and PD risk.
Results
In the EPIC4PD cohort (comprising 184,024 individuals), the multivariable-adjusted HR comparing the highest coffee intake with nonconsumers was 0.63 (95% CI 0.46–0.88, p = 0.006). In the nested case-control study, which included 351 cases with incident PD and 351 matched controls, prediagnostic caffeine and its primary metabolites, paraxanthine and theophylline, were inversely associated with PD risk. The ORs were 0.80 (95% CI 0.67–0.95, p = 0.009), 0.82 (95% CI 0.69–0.96, p = 0.015), and 0.78 (95% CI 0.65–0.93, p = 0.005), respectively. Adjusting for smoking and alcohol consumption did not substantially change these results.
Discussion
This study demonstrates that the neuroprotection of coffee on PD is attributed to caffeine and its metabolites by detailed quantification of plasma caffeine and its metabolites years before diagnosis.